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 

Abstract—The Turing instability of Ivlev-type predator model 

of a protection zone is considered. Firstly, the stability of a 

positive equilibrium point in the corresponding ordinary 

different equation model, the existence of Hopf bifurcation are 

analyzed. Then the conditions of Turing instability are given by 

linearization analysis in the corresponding reaction diffusion 

model. 

 

Index- Hopf bifurcation; Ivlev-type; protection zone; Turing 

instability. 

I. INTRODUCTION 

As we all know, the predator-prey dynamic system is one of 

the most important research topics in the mathematical and 

theoretical biology. In 1961, Ivlev[1] proposed the Ivlev type 

functional response term nx e1 , which is widely used in 

invertebrates. Garvie[2] classified it as the Holling-II type 

functional response function. Turing instability is an important 

way to study spatial inhomogeneous pattern. 

As early as 1905, Alan M Turing[3], a British 

mathematician, has explained the pattern of patterns in 

embryos, showing that in a diffusion system, diffusion 

destabilizes a steady state of uniformity under certain 

conditions and forms regular patterns in space, this is called 

turing instability or instability caused by diffusion. In recent 

years, many mathematicians and biologists have been 

interested in the predator-prey system of Ivlev, and great 

progress has been made in its research. The influence of 

diffusion on the stability, Hopf bifurcation and direction of the 

Ivlev-type predator-prey system is studied in paper [4]. 

In literature [5]-[7], Du et al. studied the effects of 

protected areas on L-V predator-prey model, Leslie 

predator-prey model and Holling-II predator-prey model. The 

turing instability of the Leslie-type and Ivlev-type 

self-diffusion models with protected areas is also studied in 

[8]-[11] .  

In the paper, we discuss the self -diffusion model of 

predator-prey with protected area  where   is a bounded 

domain with smooth boundary  ,   is the outward unit 

normal vector on the boundary; cbnmar ,,,,,,   are normal 

numbers, ,x y  are the degree functions of prey and predator 

population, respectively; ,r   are the intrinsic growth rates of 

x  and y  ,  respectively; n  is the predator's rate of prey; m  is 

the number of protected areas; a  is the competition intensity                                                                                             
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between prey individual; d  is the semi saturation constant; 

normal number ( 1,2)id i  is the diffusion coefficient 

corresponding to ,x y . Homogeneous Neumann boundary 

indicates that the system is self- closing. That is to say, there is 

no population passing through the boundary; the initial value 

0 0( ), ( )x u y u   is a non- negative smooth and non-constant zero 

function, where nxe1  is Ivlev functional response term. 

The turing instability of a predator-prey model with 

Ivlev-type functional response function and protected region 

term is studied by using qualitative analysis and bifurcation 

theory. The main contents are as follows: firstly, we discuss 

homogeneous systems in space without diffusion, analyze the 

local stability of positive equilibrium state and the existence of 

Hopf bifurcation; secondly, we study the conditions under 

which turing instability occurs for spatially inhomogeneous 

systems. 

II. STABILITY AND HOPF BIFURCATION OF SPATIALLY 

HOMOGENEOUS SYSTEMS 

The stability and Hopf bifurcation of homogeneous system 

study the following ODE System 
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it is easy to see that the system (2) has the following boundary 

equilibrium points: 

(i)The trivial equilibrium )0,1(0E , if the eigenvalue of Jacobian 

matrix at 
0E  is ,r , then 

0E  is saddle point unstable. 

(ii)The semi-trivial equilibrium )0,(1
a

r
E , if the eigenvalue of 

jacobian matrix of model (2) at 1E  is ,r , then 1E  is 

saddle point unstable. 

(iii) ),(   yxE , where 
x  and 

y  satisfy the following 

algebraic equations 
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then system (2) has a positive equilibrium if and only if the 

above equations have positive roots,  

here ( ) ( ) (1 )f x x r ax c m    , 
nxexg 1)( . It is easy 

to know that the intersection point of two curves in the first 

quadrant is the positive equilibrium point of the system. Let's 

discuss the monotonicity of )(xf  and )(xg , 0)(  xg , so 

)(xg  is monotonically increasing with respect to x . By a 

simple calculation, when ),0( 1xx , 0)(  xf , 

then )(xf is monotonically increasing, when ),( 1  xx , 

0)(  xf , then )(xf  is monotonically decreasing and 

0)(  xf , here 
a

r
x

2
1  , 0)( 

a

r
f , obviously, 

a

r
x 1 . 

To sum up, the two curves must intersect in the first 

quadrant, indicating the existence of positive equilibrium. The 

following conclusions are easily obtained by using the 

linearization method. 

Theorem.1 

 (i) when 00  , the positive equilibrium 
E of system (2) 

is locally asymptotically stable. 

 (ii) when   00 , the positive equilibrium 
E of 

system (2) is locally asymptotically stable. 

 (iii) when 00  , the positive equilibrium point 
E of 

system (2) is unstable. 

The jacobian matrix of system (2) at equilibrium point 
E  is 
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The characteristic equation of system (2) at 

E  

02  DT

 

where 

).2(det

,0
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axrJD

trJT


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(i)If 0 0   , so 0, 0T D  , then the root real parts of the 

characteristic equation are all negative, so the positive 

equilibrium point 
*E  is locally asymptotically stable. 

(ii) If 00    , so 0, 0T D  , then the root real parts of 

the characteristic equations are all less than zero. Therefore, 

the positive equilibrium point 
*E  is locally asymptotically 

stable. 

(iii) If 
00   and

0  , so 0, 0T D  . So if the Jacobian 

Matrix and determinant has a pair of conjugate eigenvalues 

whose real parts are positive, then the equilibrium point 
*E  is 

unstable. 

The Hopf bifurcation of system (2) at 
*E  is analyzed 

with   as the bifurcation parameter. Suppose 
00   

and
0  , let = ( ) ( )i      be two roots of the 

characteristic equation and substitute it into the characteristic 

equation 
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 when
0=   , 0T  ,then 

02 ( ) ( ) ( ) ( ) 0          . Derivative the left and right 

sides of the equation 
02 ( ) ( ) ( ) ( ) 0          , 

so
1

( ) 0
2

     , then the condition of transversality holds. 

According to the Poincare-Andronov-Hopf bifurcation 

theorem, when the parameter   changes and passes through 

the critical value
0 , system (2) produces Hopf bifurcation 

at
*E . 

 

III. DYNAMICS OF THE ODE MODEL 

Based on the discussion of ODE system, the stability of 

the space homogeneous positive equilibrium solution 
* *( , )x y  

of one-dimensional =(0, )l system with diffusion is further 

discussed 
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Define the real value Soblev space 
2 2

0,{( , ) (0, ) (0, ) : ( , ) | 0}u u u lX x y H l H l x y      and 

complex space ( ) { : , }X c X Xi x iy x y X     . 

Easy to know, the linear eigenvalue problem 
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Has simple eigenvalu

2 ,k k k N   , and cos ,k kx k N   is 

the principal eigenfunction corresponding to k .Simple 

analysis shows that the trivial and semi-trivial equilibrium 

points of system (3) always exist and have the same stability as 

system (2). 

The linearized equation of system (3) at 
*E  has the following 

form 
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Here, 
1 2( , )D diag d d , Here J  is given in the proof of 

Theorem.1. 

For k N , let 
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kL  is  
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we assume
0 0   , it is easy to see 0, 0k kT D  . Then both 

roots of ( )kB   have negative real parts, and the following 

theorem is easily obtained. 

Theorem.2 

If 
0 0  , then the positive equilibrium 

* * *( , )E x y   of the 

system (3) is locally asymptotically stable. 

If 
0 0   and 

0  , the internal equilibrium solution of 

ODE system is locally asymptotically stable.  

The turing stability of the spatial homogeneous solution 

of the diffusion system (3) is studied under the above 

conditions.  

It is well known that the coexisting equilibrium solution 

of system (3) is unstable if at least one root has a positive real 

part. Note that when
0 0   , 0kT  , then system (3) has 

no imaginary root whose real part is positive. For simplicity, 

define quadratic polynomials with respect to 2k  and 

determine the sign 
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let 
*

1 2 1 2( , ) 0, ( , ) 0d d d d    . 

Simplified 
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We note that 
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so 
*

1 2( , ) 0d d   has the following two position roots 
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We obtain
*

2 10       , when 2

1

d

d
  , 

2

1 2min ( ) 0, ( , ) 0
k

k d d    .So 
* *( , )x y   is unstable, which 

means turing instability occurs. 

Based on the above discussion, the following conclusions 

about diffusion-induced instability are drawn. 

Theorem.3 

If 
0 0   and 

0  hold, the coexisting steady-state 

solutions is also stable for local system (2), so there's an 

unbounded region
1 2 1 2 2 1 1={( , ) : 0, 0, }d d d d d d     , 

for
1 0  . when 

1 2( , )d d  ,  the equilibrium solution of 

system (3) is turing instability. 

IV. CONCLUSION 

The stability of the positive solution of the reaction-diffusion 

system is analyzed by means of linearization method. It is 

shown that under certain conditions, linear self-diffusion can 

cause a change in the stability of the model, that is, to produce 

Turing instability in classical sense. 
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